Second-order locking-free nonconforming elements for planar linear elasticity
نویسندگان
چکیده
منابع مشابه
Nonconforming Mixed Elements for Elasticity
We construct first order, stable, nonconforming mixed finite elements for plane elasticity and analyze their convergence. The mixed method is based on the Hellinger– Reissner variational formulation in which the stress and displacement fields are the primary unknowns. The stress elements use polynomial shape functions but do not involve vertex degrees of freedom.
متن کاملSymmetric Nonconforming Mixed Finite Elements for Linear Elasticity
We present a family of mixed methods for linear elasticity, that yield exactly symmetric, but only weakly conforming, stress approximations. The method is presented in both two and three dimensions (on triangular and tetrahedral meshes). The method is efficiently implementable by hybridization. The degrees of freedom of the Lagrange multipliers, which approximate the displacements at the faces,...
متن کاملTwo robust nonconforming H-elements for linear strain gradient elasticity
B Pingbing Ming [email protected] Hongliang Li [email protected] Zhong-ci Shi [email protected] 1 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China 2 The State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, No. 55, Zhong-Guan-Cun East Road, Beijing 100190, China...
متن کاملNonconforming Tetrahedral Mixed Finite Elements for Elasticity
This paper presents a nonconforming finite element approximation of the space of symmetric tensors with square integrable divergence, on tetrahedral meshes. Used for stress approximation together with the full space of piecewise linear vector fields for displacement, this gives a stable mixed finite element method which is shown to be linearly convergent for both the stress and displacement, an...
متن کاملLocking-free adaptive discontinuous Galerkin FEM for linear elasticity problems
An adaptive discontinuous Galerkin finite element method for linear elasticity problems is presented. We develop an a posteriori error estimate and prove its robustness with respect to nearly incompressible materials (absence of volume locking). Furthermore, we present some numerical experiments which illustrate the performance of the scheme on adaptively refined meshes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2010
ISSN: 0377-0427
DOI: 10.1016/j.cam.2009.11.001